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Abstract. A continuum SU(2.S) x U(1) gauge theory for a Heisenberg antiferromagnet with 
arbitrary spin S is obtained. We show that the level-I SU(2) wzw model with a certain 
marginally irrelevant perturbation describes the low-energy phenomena of the Heisenberg model 
with spin.;. The model with spins other than t c ~ n  be described in the level-ZS SU(2)  wzw 
model with a cenain relevant penurbation. We give a oualitative explanation of the Haldane 
conjecture for Heirenberg antiferromagnets. 

1. Introduction 

Several years ago, Haldane [l] obtained a quite surprising result for one-dimensional (ID) 
quantum Heisenberg antiferromagnets. Since then, many experimental, numerical and 
theoretical physicists have been involved in studying ID quantum antiferromagnets because 
of this ‘Haldane conjecture’. His claim is as follows: the half-odd-integer-spin Heisenberg 
model has gapless excitations on a unique ground state, while the integer-spin Heisenberg 
model only has excitations with a gap on a unique ground state. He obtained this result on 
the basis of a large spin approximation in terms of spin coherent states. Then he derived 
the O(3) nonlinear sigma model with the B term at B = 2Srr as the low-energy effective 
theory for the spin4 Heisenberg antiferromagnet. The n-field in the O(3)  nonlinear sigma 
model is the block spin variable Sa - Sa+, which can describe the low-energy physics 
of the antiferromagnet. The B term is induced into the effective action of the n-field by an 
integration of the short-wave variable Sa + S ~ + I .  We can regard the 8 term as a Berry 
phase which is a first-order derivative of a long-wave variable in the effective action. Since 
the B term is quantized by 2niS, it can affect the physics only in a half-odd-integer spin 
case. The B term tells us that the Heisenberg model must be classified into two universality 
classes: half-odd-integer and integer spins. It is well known that the O(3) nonlinear sigma 
model without the B term has only a disorder phase and the spin-; Heisenberg model 
has gapless excitations in Bethe’s exact solution. Therefore we understand the Haldane 
conjecture: it holds exactly in the spin-; case by the Bethe ansatz. solution; for other spins, 
however, there are no exact proofs of the Haldane conjecture. 

The most remarkable study enabling theoretical understanding of the ‘Haldane gap’ was 
performed by AfReck et al [2]. They studied a slightly modified spin-1 model which has 
an exactly solvable ground state and only gap excitations. Since this stimulating work was 
published spin-I chains have been studied extensively both in theoretical and experimental 
physics. The results in all the studies agree with the Haldane conjecture. 

0305-4470/941134695+14$19.50 @ 1994 IOP Publishing !.id 4695 
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There are also many works in continuum-field-theory approaches to this problem. 
Continuum field theories have many advantages for calculating various quantities in low- 
energy physics although they are not suitable for rigorous discussions. Since the Heisenberg 
antiferromagnet is believed to be an effective theory for the half-filled multi-band Hubbard 
model with strong Hunt-rule coupling, Affleck and Haldane [3] studied the Hubbard model 
using continuum field theory instead of the Heisenberg model. Low-energy phenomena 
in the Hubbard model can be described by a relativistic field theory of Dirac fermions 
@iux, (i = 1, . , . ,2S, CY =t, J.) where i is an SU(2S) colour index and a is an SU(2) spin 
index. The Hunt-rule coupling is rewritten into several four-fermion interactions which are 
either marginally relevant or marginally irrelevant operators. Using a bosonization technique 
and a renormalization-group analysis, they concluded that the low-energy excitation in 
the spin4 Heisenberg model is described by the level-2S SU(2) wzw model with some 
perturbations. Excitations with respect to SU(2S) colour and U(1)  degrees of freedom 
cannot survive in the low-energy limit due to relevant interactions. In the spin-6 case, the 
consistency of this result with the Bethe ansatz solution is checked using the finite-size 
scaling method [4,5]. This agreement implies that their argument is plausible despite the 
complicated derivation. 

In this paper, we would like to give acontinuum-field-theory approach to the Heisenberg 
model. We employ SU(2S) x U(1) gauge theory in two dimensions to describe the spin4 
Heisenberg antiferromagnet in one dimension. The argument in this method becomes much 
simpler than that of Affleck and Haldane, since we can deal directly with the Heisenberg 
model without passing through the Hubbard model. Confinement to SU(2S) x U(1) degrees 
of freedom is achieved by use of the SU(2S) x U(1) gauge field and the remaining SU(2) 
spin excitations are described by the level-2S SU(2) wzW model. Our result is totally 
consistent with that of Affleck and Haldane. 

This paper is organized as follows. In section 2, we derive a continuum gauge theory 
for the Heisenberg model. In section 3, we discuss the continuum gauge theory without 
four-fermion interactions, for which the operator contents of this gauge theory are given. 
We show that this model is identical to the level-2S SU(2) wzw model. In section 4, 
we study the spin-4 Heisenberg model by means of U(1)  gauge theory with certain four- 
fermion interactions. Our result is justified by the Bethe ansatz solution. In section 5, 
the qualitative features of the Heisenberg model with general spin S are discussed in the 
perturbed W z w  model. We will see how discrimination between the two universality classes 
of half-odd-integer and integer spin Heisenberg model occurs. In the last section, we apply 
our effective gauge theory to integrable antiferromagnetic chains with spin-I [6,7]. 

2. Continuum gauge theory for the Heisenberg model 

The spin4 Heisenberg model can be written in terms of electron operators Calx, CY =T, J.. 
i = I ,  . . . ,2S, where CY, i and x are spin, colour and site indices respectively. The spin 
operator S, on one site x can be represented by 

s, = C,L(%3/2)CbiX (2.1) 

where the oms are the Pauli matrices. The following constraints on the physical states are 
necessary for the correct spin4 representation 
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where r' is an algebra of SU(2S). Equation (2.2) is an electron number constraint and 
equation (2.3) is a singlet condition with respect to the colour index on each site. S, 
satisfies a spin commutation relation on the constrained states. In this representation, the 
Hamiltonian is 

(2.4) 

which has SU(2S) x U(1) invariance on each site. 
We are going to obtain a continuum field theory for this model. First we treat this 

model in a mean-field approximation and next take into account the correction to this 
approximation. Finally, we obtain a low-energy effective theory which gives us the exact 
exponents of the Heisenberg model. To this end the following HubbardStratonovich 
transformation is convenient 

where Bxy is a 2S x 2s auxiliary matrix. Applying the equation of motion for Bxy to the 
Hamiltonian (2.5), we can go back to equation (2.4)t. In the mean-field approximation, Bxy 
is a constant matrix and we require only a constant SU(2S) x U(1)  gauge invariance. The 
mean-field Hamiltonian HO can be diagonalized in the Fourier transformation: 

Ho = - (2.6) 

where a is a lattice-spacing parameter. The second term in equation (2.6) must vanish by 
parity symmetry C ( k )  + C(-k)  and thus B is a Hermitian matrix. Furthermore B'j can 
be written as B08'j by the SU(2S) invariance, then the diagonalized Hamiltonian HO is 

[(B" + j j i )coska  + i(Bii - dj ' )s ink~]C~~(k)C,j(k)  
+ r / O K k < ( Z / 4  

The value of Bo is related to the Fermi velocity. The mean-field ground state has a half- 
filled Fermi sea which guarantees the total fermion number constrained by equation (2.2). 
The Fermi surface is at f n / 2 a .  If one could perform the path integration over Bi$ and 
C,,, around the solution of the mean field with the constraints equations (2.2), (2.3), all the 
obtained results would be exact. Since it is too demanding to perform here, we derive a 
suitable effective theory which can describe the low-energy phenomena of the Heisenberg 
model. The low-energy phenomena must be dominated by hole creation just below the 
Fermi surface and particle creation just above it. Thus we are only concerned with the 
operator C ( k )  for k near the Fermi surface &/2a. In fact we assume that the operators 
C(k)  outside the range Ik f rr/2al < A can be truncated from ow low-energy effective 
theory, where A is an arbitrary ultraviolet cut-off parameter which is much less than the 
Fermi momentum. Thus we write 

1 -C , - ei(n/2n)x ( x )  + e-i(n'zo)x $4 (1) (2.8) J;r " - 
t In the path-integral formalism, we go back to equation (2.4) integrating over Bxy.  Note that the Gaussian integral 
of Bxs has the 'appropriate' sign only if the original Hamiltonian is antiferromagnetic. 
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where $+(x) and $-(x) are slowly varying on the lattice scale. The commutation relations 
between $ and $t are { $ + ( x ) ,  $J(y)) = S(x - y), {$-(x), $-(y)) = S(x - y)  and others 
vanish. We ignore the rapidly oscillating terms in any cdculations. In this sense, $+ and 
@- are independent of each other at equal time. Although our derivation is not rigorous, 
we can check the derived effective theory by the Bethe ansatz solution for the spin-f 
case. After checking the results, we can calculate various quantities in our effective theory. 
Furthermore, we may apply our consideration to the higher spin case. It is not rigorous 
but plausible and useful. Note the chiral Z, symmetry $+ -+ -$+ originates from the 
translational symmetry C, -+ iCz+a in the Heisenberg model. Constraints (2.2) and (2.3) 
can be represented in terms of @+ and @- as follows. 

C Itoi and H Mukaida 

t 

$Jmi$+mi + *lui+-ui = Constant (2.9) 

$+uj$$+aj t + $-aj$+-mj t = 0 (2.10) 

pimi $*j + $lei $+mi = 0. (2.1 1) 

Equations (2.9) and (2.10) express the constraint for vector U(1) and SU(2S) currents, 
respectively. 

Next, we consider the integration of the the Bxu field in the long-wave approximation, 
In order to take a naive continuum limit, we parametrize B., as 

Bxy = B0eoVry N Bo(l + aV,) 

B$ = Bod”’ 7’ 2: g0(l +avJx) (2.12) 

and define 

A I  $(V., - V,!,.) Rxy = i(VXy + V,!J. (2.13) 

Note that in the long-wave approximation A,, transforms as 

 SA^ = -al€ - [ A ~ ,  €1 (2.14) 

under the infinitesimal gauge transformation SBxy = [ E ,  Bz,]. Integration over Rxy in 
equation (2.5) can be naively performed. The resulting Hamiltonian in the long-wave 
approximation is 

+ A I ( ~ . L ~ - a j  - *Li*+mj)(+Laj*teL - $Jaj$-ai) (2.15) 

where hL is a certain dimensionless constant. We have ignored some irrelevant operators 
which do not affect the critical theory. The effective Lagrangian can be written by taking 
into account the constraints (2.9H2.11) as follows. 

L: = $y”iD,$ - k~(i$jy’$j)~ - Az(i$i$j)z (2.16) 

where D, = a, +A,,  (fi  = 0, l ) .  A0 is an anti-Hermitian matrix field which is a multiplier 
field for the constraints (2.9) and (2.10). Constraint (2.11) can be achieved by the last term 
in equation (2.16) which is invariant under the chiral Z, transformation $+ -+ -$+. Thus 
we can regard the coupling A2 to be large enough compared with the cut-off parameter A. 
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3. Strong coupling gauge theories in two dimensions 

As the first step towards analysing the effective Lagrangian (2.16), we treat the four-fermion 
interactions as a perturbation. In this section, we consider the unperturbed Lagrangian 

- 
&O = i@y"D,@. (3.1) 

Here U(1) and SU(2S) gauge fields %e denoted by A, and B,, respectively. So the 
covariant derivative is written as? 

D, E a, - iA, + B,. (3.2) 

The Dirac field $=i (x)  has a colour index i = 1, . . . , 2 S  and a spin index a =?, .1 which is 
a flavour in QCD terminology. Here we show that the unperturbed model is exactly solvable 
and is equivalent to the level-2S SU(2) wzw model. In the next section, we consider our 
model Lagrangian (2.16) as a perturbed model of equation (3.1). The coupling constant in 
two-dimensional QCD has the dimension of mass, and a possible gauge theory as a critical 
theory only is realized in the weak or strong coupling limit. Our model can be regarded as a 
strong coupling limit in QcD, which is a stable fixed point against the F2 term deformation 
IS]. This naive dimensional analysis is consistent with Zamolodchikov's c-theorem, which 
claims that a central charge of conformal field theory at an infrared fixed point is less than 
that at an ultraviolet fixed point. In the following, we obtain physical operators of the model 
(3.1) and their conformal dimensions. 

3. I .  Free-field representation 

First we rewrite the Lagrangian (3.1) in terms of free fields. The Lagrangian (3.1) is 
decoupled into the left- and right-moving sectorst: 

L,, = &ia- + A- + iB-)$+ + *!(ia+ + A +  + iB+)$-. (3.3) 

The classical Lagrangian is invariant under the chiral gauge transformations which 
independently transform the left and right sectors. 

$+ + *: E gIeiAc$+ *- + $L g2eL"'$- 

A+ + A; E A - + a + A z  A- + A' = A -  (3.4) 

B+ + B!+ E gzB+g,' + gd+g;' B- + B: =glB-g;' +gla-g;l. 

However, no regularization can preserve all the local symmehies due to the c h i d  anomaly. 
Here we respect vector local transformations defined by setting AI = Az, gl = g2 in the 
above chiral transformations (3.4). 

The partition function Z of the model (3.1) is 

t The non-Abelian gauge fields 5, are expanded as Bir' where r' is an anti-Hermitian matrix in the fundamental 
representation of the su(7.S) algebra satisfying [ rn .  rbl = pbcrC, Tn"rb = -1 /2Pb.  
$ We adopt the following notation: yo = 6'. y' = isz, *+ = ($;, q!), a* = f 81. 
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where Vgaugc eliminates redundant integrals originating from gauge symmetry. 
convenient to paramemze the gauge fields in the following way 
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It is 

The change of variables induces a Jacobian in the partition function. We can exponentiate 
it by employing the Crassmannian fields (i.e. Faddeev-Popov ghosts). 

VA+'DA-DB+DB- = DqYDqDgVh det a+ det 8- det V+ det V- 

(3.7) 

a, + [B, ,  c] .  The measure in the space of SU(2S) group-valued functions is 

'Dg = ndg(x)g- ' (x)  g E SU(2S). (3.8) 

) = D@DqDg'Dh exp i d2x pia+P + yia-j3 - 2Tr&V+ii: - 2TrbiV-c ( I  
where V,c 
formally defined by 

I 

Then we cany out the vector gauge eansformation generating the following change 

A; = A ,  - ap(o B; = h-'B,h + h-'a,h. (3.9) 

After the gauge transformation, g changes to g' = h-'g. The measure of the partition 
function is invariant under the vector gauge transformation in our regularization. The 
resulting Lagrangian does not contain U, and h, and DcpDh completely cancel out with the 
gauge volume Vsauge. 

The next step is to remove A+ and B+ by the chiral rotation 

4- = gr-le-W' @- 1 (3.10) 

6 = g"'gg' ; = g'-'E'g'. (3.11) 
- 

The measures of the Grassmannian fields are not invariant under a chiral rotation. 
The response W from the transformation (3.10) is calculated from the following relation. 

/D@?'D@L exp [i/dzx @!iD+@L = Z$D&exp I S  d2x &a+$- + iW . 1 
(3.12) 

Namely 

iW =IndetD+. 

The Dirac determinant on the right-hand side is calculated in 191. One finds 

iv = -2wWm[g'i - 

(3.13) 

(3.14) 
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where Wwzw[g'] is the wzw functional defined by 

ww[gi E -- d2x a+gg-'a_gg-' + d2xdseabca,gg-'abgg-'a,gg-' . 
(3.15) 

Similarly we can calculate the response to the change (3.1 1) regarding 0, as the Dirac 
operator to the adjoint representation: 

WZX' = ~ & d  exp(- i~~,~wzw[g ' l )  (3.16) 
where pk f d b c  = C U P d .  Thus we obtain the freefield realization of the partition function 
(3.5) (hereafter we omit primes) 

8 X  (s 's 1 
- 

Z = Z)(Fields)expIi(Smtt, + Se, + S~,,dl (3.17) J 
where 

Smm = d2x(tjr.$LL$+ + $!ia+&) 

/d*xa++a-+ -(2+2c,)wwzw[gi sgauge = -z 
s 
s - 

S,,,, = - dzx(via+B + yia-fJ - 2Tr&ia+s - 2Trbia-c). (3.18) 

Although the kinetic terms of the bosonic fields in the gauge sector have a minus sign, the 
physical space is positive definite [lo]: the bosonic fields in the gauge sector cannot appear 
in the physical space by themselves. 

The central charge of the model (3.1) comes from three sectors appearing in the action 
(3.18). The matter sector consists of 4.7 Dirac fermions, so that the central charge of this 
sector cmatWr is 

C" = 4s. (3.19) 
The gauge sector has a single boson and a level -(2+2C,) SU(2S) wzw field. Therefore 
the central charge of this sector is [ 1 I] 

Cgauge = 
(-2 - 2CU)dimSU(2) 4S2(2S + 1) - S - - (3.20) 

The central charge of the ghost sector Cghos[ can be obtained from the two-point functions 
of the energy-momentum tensor (EM tensor) of the ghosts. The result is 

(3.21) 

( 3 . W  

+ (-2 - 2C") + C" s +  1 

CghoEt = -2 - 2cz = -8s 2 . 
In this way, one finds that the total central charge of the model is 

Crotal = Cmauei + Cgauge + Cghost = 3s/(s f 1). 
This is identical to that of the level3S SU(2) WZW model. 

We can show that the EM tensor of the action (3.18) is identical to that of the level-2S 
SU(2) wzw model [12]. The EM tensor of the matter sector is written in a summation of 
quadratic forms of a colour current, a flavour current and a U(1) current [13]. However, 
the EM tensors of the colour pan and of the U(1) part do not contribute to the physics 
because they are, together with the EM tensors of the gauge sector and the ghost sector, 
written in BRST exact form. The remaining EM tensor, which is the quadratic form of the 
flavour current, is exactly same as that of the level-2S SU(2) WAY model. 

Next we shall clarify the physical operators of the model (3.1) in order to see the 
relationship with the wzw model in detail. 
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3.2. Physical observabies 

We consider the meson-like operator S,&) defined as 

t 
s u , ~ ( x )  E tcI,,+(x)Sip-(x) 

It is represented by the free field using equations (3.10) and (3.1 I )  

(3.23) 

Sa,&) = ~ ~ i + ( x ) g a ( x ) e ' ~ ( " ) G # ' 8 . 1 - ( x ) .  (3.24) 

This belongs to the fundamental representation of the chiral su(2) x su(2) algebra. We can 
compute the conformal dimension of S.,p(x). (Alp ,  A l j 2 ) .  collecting the dimensions of the 
free fields in the right-hand side of equation (3.24). The free Dirac field @+ (G-) has the 
conformal dimension (f, 0) ((0, f)) .  According to Knizhnii and Zamolodchikov 11 I], a 
level-k S U ( N )  wzw field ha# has the conformal dimension 

k +  C,' k + C, (3.25) 

where Ca = ( N z  - 1 ) / 2 N .  Therefore level-(-2 - 2s) SV(2S)  WZW field gix in the right- 
hand side of equation (3.24) has the dimension 

(3.26) 

The dimension of eimb) is directly calculated from the two-point function 

This indicates ei+ has the dimension 

Hence, the conformal dimension of S,,p is 

(3.28) 

(3.29) 

This result implies that &,,g is identical to the fundamental field of the level-2S SU(2)  wzw 
field h,p. 

In order to check this identification, let us construct a primary field with higher chiral 
su(2) spin. Define 

sc ,... ur,.p,...h, -.%Wn,.~, ...sa2ii.pJ (3.30) 

where Sym(.. .) means to symmetrize the indices (a,  , . . q j )  and (@I , . , ,921). So 
S, ,... @,,.fi ,... A, has the chiral su(2) spin ( j ,  j ) ,  where j E Z / 2 .  From equation (3.24), 
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we see that the indices ( i l , .  . . , i 2 j )  and ( & I , .  . . , kz l )  of the product g i l k ,  ... gi,,h, 
are antisymmehized in S, ,..,,. U2,,8 ,,..., a,. Therefore gi,x, . . .gi*,ho belongs to the 2j- 
antisymmetric representation of chiral su(2S) algebra and has the conformal dimension 

(2S+l ) j (S -  j)/S - ( 2 S + l ) j ( S -  j ) /S (- 2 + 2 s  2 + 2 s  
(3.31) 

The dimension of S, ,... u2,,p ,... p Z i ,  ( A j ,  &), is calculated using the result (3.31) and the 
dimensions of ( @ + $ - ) 2 j  and ei2j@: 

(3.32) 

This is precisely equal to the dimension of Sym(h,,p, . ' '  h,ipl,). We notice the fact that 
the Pauli principle restricts the range of j to 0 6 j < S ,  which is also an expected result 
Ill]. 

Another kind of a gauge-invariant operator i s  a flavour current 

JiO) @ ~ , ~ ( ~ ) ( ~ ~ p / Z ) ~ * i p ( ~ )  (3.33) 

where the ua are Pauli matrices. They satisfy the level-2S Kac-Moody algebra. The whole 
physical space of the model is spanned by acting Fourier modes of J,.(x) to some states 
generated by a product of the operator &,p. Therefore we can conclude that the physical 
Hilbert space is equivalent to the Hilbert space of the level-2S SU(2) WzW model. 

4. Perturbation theory in a strong coupling QED for the S = e Heisenberg model 

Our goal is to solve the model given by equation (2.16). As explained in the previous 
section, this model at AI = A2 = 0 is described in the level-2S SU(2) wzw model, and 
thus we consider perturbed theories of the wzw model with the couplings AI and h2. In 
the Lagrangian (2.16), the chiral symmetry is violated apparently by the two independent 
coupling constants Al  and ,I2. Since the chiral symmetry is generally believed to protect 
massless excitations in field theory, we have to answer why the massless excitations survive 
in the Heisenberg model. First, we discuss the S = 112 case and check the results by the 
finite-size scaling in the Bethe ansatz solution. After that we discuss other spin cases in the 
next section. 

In the S = 1/2 case, the model (2.16) is a two-flavour strong coupling U ( 1 )  gauge 
theory with four-fermion interactions. For the description in terms of the level-1 SU(2) 
wzw model, the following expression for the four-fermion interaction is more manifestly 
written 

- A ~ ( & i y ~ @ d '  - Az(?&@dZ = 4(h1 + A N +  . J- + (AI + kdj+j- 

+ ;(hi - A Z ) ( € " ~ @ ~ + @ ~ + € ~ ~ @ ~ - @ ~ -  + HC). (4.1) 

Note that the first and last terms violate chiral SU(2) and U(1) symmetry, respectively. The 
last term does not contain any SU(2) degrees of freedom but a U ( 1 )  degree of freedom, 
which is killed by the U(1) gauge field. In fact, the last term is a dimension zero operator 
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which is just constant and affects nothing in the physics. The second term on the right- 
hand side of equation (4.1) vanishes because of the constraints (2.9). We have lo lake 
into account only the first term in the right-hand side of equation (4.1) which has the 
conformal dimension (1.1). The SU(2)  excitations are independent of the U(1) degree of 
freedom. Thus the system is described in the level-1 SU(2) wzw model with a perturbation 
J+ . J - .  Although this term violates the chiral S U ( 2 )  symmetry, it is marginally irrelevant 
for a positive coupling constant A i  + A2 z 0. Since A2 should be large enough to realize 
the constraint in our case, the perturbation J+ . J- must vanish in the low-energy limit. 
This is the reason why the spin-; Heisenberg model has massless excitations despite the 
existence of the chiral symmetry violating interactions. This obtained effective theory for 
the Heisenberg model is identical to the continuum field theory model derived from the 
half-filled Hubbard model by Meek and Haldane [3]. 

We can check whether this continuum field theory describes the low-energy physics of 
the spin-; Heisenberg model by the finite-size scaling of the Bethe ansatz solution. This 
work has already been done by Affleck er al [4,5]. The finite-size effect in the energy of the 
ground and excited states is calculated in conformal field theory by a conformal mapping 
from a complex plane onto a cylinder with a finite circumference L [14]. The leading term 
of the ground-state energy is proportional to L. The L-' correction to the ground-state 
energy gives us the central charge of the system, An excitation energy proportional to L-' 
gives us the conformal dimension of the corresponding primary field. If we study these 
finite-size effects in the solution of a lattice model (for example the Bethe ansatz solution 
of the Heisenberg model), we find the corresponding conformal field theory with suitable 
central charge and a whole set of primary fields which describe the critical phenomena in 
the model. Generally, if the conformal field theory has marginally irrelevant operators there 
are further logarithmic corrections to the finite-size effects on the energy levels of the model 
[lS]. The ground-state energy has a L-'(log L)-3 correction and the excited energy has an 
L-](log L)-' correction which can be calculated within the framework of a perturbation of 
the conformal field theory. 

The coefficients of these corrections are determined by the three-point functions of 
the operators. If there are logarithmic corrections to the lattice model, the low-energy 
phenomena of the system can be described in the deformed conformal field theory with 
certain marginally irrelevant perturbations. 

In the spin-; Heisenberg model, we can compare the results of the Bethe ansatz solutjoo 
to the level-1 SU(2)  wzw model with the J+ J- perturbation. The result is good as we 
will show below. 

The single-loop calculation in the wzw model shows that the sign of the bare coupling 
constant determines whether the J+ . J- perturbation is marginally relevant or irrelevant. In 
our case 1x1 I c A2, J+ . J- is marginally irrelevant, and thus we can calculate the finite-size 
effects in the perturbation theory. The finite-size correction of the ground-state energy Eo 
to the bulk part EOL is 
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The energy gap of the first excited states are given by 

Et - Eo = ." + ") t log L 

(4.2) 

(4.3) 

(4.4) & - E o = -  x , + -  
?yz L ( lo:L) 
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where E,  and Es are the energy of triplet and singlet excitations, respectively. We can 
calculate c. xtr xSr do, dt, and d, both in the wzw model and the Bethe ansatz solution as 
follows. 

c Xt Xr do 4 4 
3 _ _  1 2  WZW l f i H  4 4  

Bethe ansatz 1 f f 0.3433 - 4  a. (4.5) 

The results of the Bethe ansatz solution were obtained by Woynarovich and Eckle [16]. 
They agree with each other except for do. This reason for the disagreement in do has not 
yet been understood. 

On the basis of the finite-size scaling analysis of the Bethe ansatz solution, we conclude 
that low-energy phenomena in the spin-f Heisenberg model can be described in the level-I 
SU(2) wzw model with the marginally irrelevant perturbation J+ . J- .  Various quantities 
can be calculated within this framework from now. 

5. A relevant perturbation in the wzw model for the S > i Heisenberg model 

In the S > 1/2 case, we have to reconsider the four-fermion interaction within the framework 
of the level-2S SU(2) WZW model. The meson-like operator $ii+@,+ can be identified with 
the SU(2)  valued field h , ~ ( x + ,  x - )  in the wzw model, which has conformal dimensions 

3 (A") 
The four-fermion interaction ($@)' is a relevant operator (Trh)2 which has conformal 
dimensions 

1 (s&) 
in the wzw model. The essential difference between the S > 1/2 case and the S = 1/2 
case is the existence of the relevant operator with chiral Zz symmetry @+ -+ -$+ (or 
h,p + -ha# in terms of the wzw model). There is no chiral 22 symmetric relevant operator 
in the unitary representation of the SU(2))  wzw model for the S = 1/2 case. There are 
primaries with conformal dimensions ( j ( j  + 1)/2S + 2, j ( j  + 1)/2S + 2),0 < j C S in 
the level-2S SU(2) wzw model. Since the primary with a half-odd-integer j has no chiral 
22 symmetry, the only marginal perturbation J+ . J- is possible in the S = 1/2 case. 

In the S > 1/2 case, the most relevant perturbation (Trh)2 should be added to the 
Lagrangian of the wzw model in order to achieve the constraint = 0. Conformal 
field theory with the relevant perturbation must be deformed to another fixed point or a 
massive theory. The SU(2) wzw model with the constraint Trh = 0 is classified in two 
universality classes of half-odd-integer S and integer S. This can be explained as follows. 
At large S, we can treat the wzw model semiclassically. The SU(2) goup valued field h,b 
in the wzw model can be parametrized by the two complex variables ZI, zz with a constraint 
Jz112 + 1z2/z = 1 as follows 

(5.3) 
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If we require the constraint Trh = 0, the real part of ZI vanishes and the field h is in a two- 
dimensional sphere with a radius 1. This implies that the target space of the WZW nonlinear 
sigma model with the conshaint Trh = 0 becomes a two-dimensional sphere which is the 
same as the target space of the O(3) symmetric nonlinear sigma model. In a practical 
calculation, it was confirmed that the kinetic term and the wz term of the constrained WZW 
model are identical to the kinetic term and B term at 0 = 2 S s  of the O(3) nonlinear sigma 
model, respectively. We obtained this model for the Heisenberg model in a different way. 
The 0 term discriminates between the models half-odd-integers and integers. Since the O(3) 
nonlinear sigma model is asymptotically free and the coupling constant is proportional to 
S2 in our situation, the renormalization-group flow with increasing length is running toward 
smaller S within one universality class. This is consistent with Zamolodchikov’s c-theorem 
in the deformation of the level-2S SU(2) WZw model. The c-function takes the value 
6S/(2S + 2) at a fixed point which is described by the level-2S SU(2) WZW model. The 
renormalization flow is running toward a model with a smaller value of c-function within 
one universality class. In the half-odd integer spin universality class, only the S = 1/2 
model has a stable fixed point which is described in the SU(2)r wzw model. Other fixed 
points in the half-odd-integer spin case are unstable against a (Trh)2 perturbation and might 
be deformed into the SU(2)l W z w  model. Thus, the low-energy phenomena of the half- 
odd-integer spin Heisenberg model can be described by the SU(2)l WZW model with the 
marginally irrelevant perturbation J+ . J - .  In the integer spin universality class, there is no 
stable fixed point. Thus the field theory becomes massive. Our consideration is plausible 
despite the semiclassical view point of the universality classification. The Bethe ansatz 
and the Affleck-Kennedy-bib-Tasaki (AKLT) solutions [2] agree with the continuum field 
theory at S = 1/2 and S = 1 where the quantum effects are very strong. 
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6. Summary 

We have derived ZD continuum gauge theories as effective theories of the I D  quantum 
Heisenberg antiferromagnets with arbitrary spin S. In order to represent the spin matrix in 
terms of fermion operators, local constraints are necessary as in continuum field theories. 
The SU(2S)  x U ( 1 )  current constraints can be realized in terms of strong coupling gauge 
theories and other constraints can be achieved by adding a certain perturbation term. 
SU(2S)  x U ( 1 )  degrees of freedom are confined by the gauge field and it was shown 
that unperturbed gauge theory is equivalent to the level-2S SU(2) wzw model, 

We show that the low-energy phenomena in the spin-: Heisenberg model can be 
described in the level-1 SU(2)  wzw model with a marginally irrelevant perturbation 
J+ . J-  which violates the chiral SU(2)  symmetry. Since this perturbation vanishes at 
the critical point, the massless excitations can survive despite the violation of the chiral 
SU(2) symmetry. Several quantities of this continuum field theory were checked by the 
Bethe ansatz solution in the finite-size scaling method. The results are good. 

We can apply our derivation of an effective Lagrangian to some extended 
antiferromagnetic chain models with higher spin [6,7]. They are solved using the Bethe 
ansatz and it is believed that these solvable models have gapless excitations. This has been 
confirmed in several practical models using analytic and numerical methods [4.17]. Here, 
we consider the S = 1 case in terms of continuum field theory. The model described by 
the following bilinear-biquadratic Hamiltonian 

(6.1) H = p, . sy - 8 ( 4  . SY)*I 
(l.Y) 
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is solvable at p' = 1 and -1 using the Bethe ansatz [6,7]. At ,9 = -1, the model possesses 
an SU(3)  symmetry and a gapless excitation. To see this, we introduce three fermion 
operators C,, [13]. The spins can be written: 

SO, = C+u*Ln,pCpx (6.2) 

where the Los are the S =. 1 generators. The states for the spin system satisfy the local 
constraint at each lattice site as in the S = l j 2  case. 

Ct&,,lphys) = Zlphys). (6.3) 

The relations 

Ln.YpL"y, = 6+4,&, - &$pr (L'Lb),p(L'Lb),, = sups,, + 6,,6p. (6.4) 

enable us to rewrite the hamiltonian (6.1) in terms of the fermion operators. 

At p' = - I ,  the hamiltonian has a global SU(3)  symmetry in addition to the local U ( 1 )  
gauge invariance, The low-energy phenomena in this system can be described in a strong 
coupling U(1) gauge theory with SU(3)  flavour as in the case of the S = 112 Heisenberg 
model. In mean-field theory, the fermion momentum becomes a / ( 3 a ) ,  which is determined 
by the constraint (6.3) on the number of fermions at each lattice site. The low-energy 
phenomena are dominated only by those fermion operators ++ and $- near the Fermi 
surface: 

c a x  - - J;;($m+(,)ei(x/34x + $ e- (x)e-i(~/30)x 1. (6.6) 

The effective Lagrangian of the U ( 1 )  gauge theory with SU(3)  flavour becomes 

= i+ a y p D p $ u  + (marginal operators). (6.7) 

This effective theory is equivalent to the level-1 S U ( 3 )  wzw model with a certain marginal 
perturbation. Although this model has one relevant operator with gauge invariance, 
the chiral Z3 symmetty forbids it to appear in the Lagrangian (6.7) and protects the 
gapless excitation as in the S = 1/2 Heisenberg model. The translational symmetry of 
one lattice bond in the original lattice model (6.1) is represented as a chual Z3 symmetry 
$+ + ei(2n/3)$+, 9- -+ $- in the effective gauge theory. This c h i r a l 5  symmetry forbids 
the relevant operator &$@, and then the gapless excitation can survive at ,9 = -1. On 
the other hand, around p' = -1  there is no symmetry to forbid the relevant operator, and 
therefore there is no reason for the model to have gapless excitations. 

At the other solvable point p' = 1, the existence of a gapless excitation has been verified 
[4,7, 171. The finite-size scaling analysis tells us  that the low-energy phenomena can be 
described in terms of the level-2 wzw model [4,17]. In our gauge theory description, this 
model corresponds to an SU(2)  x SU(2) Dirac fermion coupled to an S U ( 2 )  x U(1) gauge 
field. Since this theory has a relevant operator ($$)z with conformal dimensions (i, i) 
which satisfies required certain symmetries. it is easily understood that a theory around 
p' = I has no gapless excitation. 
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In other spin cases of the Heisenberg model, the system can be described by the leveL2S 
SU(2) R'ZW model with a certain relevant perturbation, which must deform the conformal 
field theory to the other fixed point or massive theory. From the semiclassical view point 
in the level-2S SU(2)  WzW model with the constraint Trh = 0, we see that the system 
becomes an O(3) non-linear sigma model with the 6 term at 0 = 2nS. The 0 term tells us 
that there are two universality classes for the half-odd-integer spin and integer spin systems. 
The half-odd-integer spin systems can be described in the level-1 S U ( 2 )  WZW model with 
the marginal irrelevant perturbation J+ .  J- near the critical point. The integer spin systems 
become massive. 

This is the whole story for understanding the 'Haldane conjecture' in terms of the 
strong-coupling gauge theory. It remains to study the occurrence of the two universality 
classes using suitable fermion terminology instead of bosonization. 
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