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Abstract. A continuum SU(25) x U(1) gauge theory for a Heisenberg antiferromagnet with
arbitrary spin § is obtained. We show that the level-1 SU/{2) wzw model with 2 certain
marginally irrelevant perturbation describes the low-energy phenomena of the Heisenberg model
with spin--;-. The mode] with spins other than % can be described in the level-28 SU(2) wzw
model with a certain relevant perturbation. We give a qualitative explanation of the Haldane
conjecture for Heisenberg antiferromagnets.

1. Introduction

Several years ago, Haldane [1] obtained a quite surprising result for one-dimensional (iD)
quantum Heisenberg antiferromagnets. Since then, many experimental, numerical and
theoretical physicists have been involved in studying 1D quantumn antiferromagnets because
of this ‘Haldane conjecture’, His claim is as follows: the half-odd-integer-spin Heisenberg
model has gapless excitations on a unique ground state, while the integer-spin Heisenberg
model only has excitations with a gap on a unigue ground state. He obtained this result on
the basis of a large spin approximation in terms of spin coherent states. Then he derived
the O(3) nonlinear sigma model with the 8 term at @ = 257 as the low-energy effective
theory for the spin-S Heisenberg antiferromagnet. The n-field in the O(3) nonlinear sigma
model is the block spin variable S5, — S7;4; which can describe the low-energy physics
of the antiferromagnet. The @ term is induced into the effective action of the n-field by an
integration of the short-wave variable S5; + S5,..1. We can regard the € term as 2 Berry
phase which is a first-order derivative of a long-wave variable in the effective action. Since
the & term is quantized by 2xiS, it can affect the physics only in a haif-odd-integer spin
case. The 6 term tells us that the Heisenberg model must be classified into two universality
classes: half-odd-integer and integer spins. It is well known that the ((3) nonlinear sigma
model without the # term has only a disorder phase and the 5pin-15 Heisenberg model
has gapless excitations in Bethe’s exact solution. Therefore we understand the Haldane
conjecture: it holds exactly in the spin-% case by the Bethe ansatz solution; for other spins,
however, there are no exact proofs of the Haldane conjecture.

The most remarkable study enabling theoretical understanding of the ‘Haldane gap’ was
performed by Affteck et al (2]. They studied a slightly modified spin-1 model which has
an exactly solvable ground state and only gap excitations. Since this stimulating work was
published spin-1 chains have been studied extensively both in theoretical and experimental
physics. The results in all the studies agree with the Haldane conjecture.

0305-4470/94/134695+14819.50  © 1994 IOP Publishing Led 4695



4696 C Itoi and H Mukaida

There are also many works in continuum-field-theory approaches to this problem.
Continuum fieid theories have many advantages for calculating various quantities in low-
energy physics although they are not suitable for rigorous discussions. Since the Heisenberg
antiferromagnet is believed to be an effective theory for the half-filled multi-band Hubbard
model with strong Hunt-rule coupling, Affleck and Haldane [3] studied the Hubbard mode!
using continuum field theory instead of the Heisenberg model. Low-energy phenomena
in the Hubbard model can be described by a relativistic field theory of Dirac fermions
Ve, = 1,...,28, a =1, ) where { is an SU{25) colour index and « is an S&(2) spin
index. The Hunt-rule coupling is rewritten into several four-fermion interactions which are
either marginally relevant or marginally irrelevant operators. Using a bosonization technique
and a renormalization-group analysis, they concluded that the low-energy excitation in
the spin-S Heisenberg model ts described by the level-28 SU(2) wzw model with some
perturbations.  Excitations with respect to SU(2S) colour and /(1) degrees of freedom
cannot survive in the low-energy limit due to relevant interactions. In the spin-; case, the
consistency of this result with the Bethe ansatz solution is checked using the finite-size
scaling method [4,3]. This agreement implies that their argument is plausible despite the
complicated derivation.

In this paper, we would like to give a continuum-field-theory approach to the Heisenberg
model. We employ SU(28) x U{l) gauge theory in two dimensions to describe the spin-§
Heisenberg antiferromagnet in one dimension. The argument in this method becomes much
simpler than that of Affleck and Haldane, since we can deal directly with the Heisenberg
model without passing through the Hubbard model. Confinement to SU(25) x U (1) degrees
of freedom is achieved by use of the SU(2S) x U/(1) gauge field and the remaining SU(2)
spin excitations are described by the level-2§ SU(2) wzw model. Our result is totally
consistent with that of Affleck and Haldane.

This paper is organized as follows. In section 2, we derive a continuum gauge theory
for the Heisenberg model. In section 3, we discuss the continuum gange theory without
four-fermion interactions, for which the operator contents of this gauge theory are given,
We show that this model is identical to the level-28 SU{2) wzw model. In section 4,
we study the spin—% Heisenberg model by means of /(1) gauge theory with certain four-
fermion interactions. Our result is justified by the Bethe ansatz solution. In section 5,
the qualitative features of the Heisenberg maodel with general spin S are discussed in the
perturbed Wzw model. We will see how discrimination between the two universality classes
of half-odd-integer and integer spin Heisenberg model occurs. In the last section, we apply
our effective gauge theory to integrable antiferromagnetic chaing with spin-1 [6,7].

2. Continuum gauge theory for the Heisenberg model

The spin-§ Heisenberg model can be written in terms of electron operators Cyie, & =1, |,

i=1,...,28, where e, i and x are spin, colour and site indices respectively. The spin
operator S, on one site x can be represented by
Sx = Clix(0ap/2)Cix 2.1)

where the oug are the Pauli matrices. The following constraints on the physical states are
necessary for the correct spin-S representation

CLx Caixlphys) = 2S]phys) (2.2)

Clix T8 CajxIphys) = 0 (2.3)
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where t* is an algebra of SU(25). Equation (2.2) is an electron number constraint and
equation (2.3) is a singlet condition with respect to the colour index on each site. S,
satisfies a spin commutation relation on the constrained states. In this representation, the
Hamiltonjan is

H=) 8,8 =—= Z C s CajyCly, Cptx + constant 2.4)
{xy)

which has SU(25) x /(1) invariance on each site.

We are going to obtain a continuum field theory for this model. First we treat this
model in a mean-field approximation and next take into account the correction to this
approximation. Finally, we obtain a low-energy effective theory which gives us the exact
exponents of the Heisenberg model, To this end the following Hubbard-Stratonovich
transformation is convenient

Z(B‘ CliyCajy + HC+ BjLBY) (2.5)
(xy}

where B,y is a 25 x 25 auxiliary matrix. Applying the equation of motion for B;, to the
Hamiltonian (2.5), we can go back to equation (2.4)f. In the mean-field approximation, B,
is a constant matrix and we require only a constant SU(25) x U{1) gauge invariance. The
mean-field Hamiltonian Hy can be diagonalized in the Fourier transformation:

[(BY 4 B/)coska + i(BY — B/) sinka)C}, (k) Cu; (k) (2.6)

~(rja)Sks(n/a)

Hy =

where a is a lattice-spacing parameter. The second term in equation (2.6) must vanish by
parity symmetry C(k) = C(—k) and thus B is a Hermitian matrix. Furthermore BY can
be written as Bpd" by the SU(2S) invariance, then the diagonalized Hamiltonian Hy is

Ho= By Y . cos kaCy(k)Can (k). @7
k

The value of Bg is related to the Fermi velocity. The mean-field ground state has a haif-
filled Fermi sea which guarantees the total fermion number constrained by equation (2 2.
The Fermi surface is at £+ /2a. If one could perform the path integration aver By and
Cy:x around the solution of the mean field with the constraints equations (2.2), (2.3), all the
obtained results wonld be exact. Since it is too demanding to perform here, we derive a
suitable effective theory which can describe the low-energy phenomena of the Heisenberg
model. The low-energy phenomena must be dominated by hole creation just below the
Fermi surface and particle creation just above it. Thus we are only concerned with the
operator C (k) for k¥ near the Fermi surface £x/2z. In fact we assume that the operators
C(k) outside the range |k & w/2a| € A can be truncated from our iow-energy effective
theory, where A is an arbitrary ultraviolet cut-off parameter which is much less than the
Fermi momentum. Thus we write

1 . .
75 Coix = el /2y i (k) + ey (x) (2.8)

t In the path-integral formalism, we go back to equation (2.4) integrating over B;y. Note that the Gaugsian integral
of B,y has the ‘appropriate’ sign only if the original Hamiltonian is antiferromagnetic.
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where ¥, (x) and 9¥_{x) are slowly varying on the lattice scale. The commutation relations
between y and ! are {¥,. (), w109} = 8(x — 3), {¥-(x), ¥L ()} = 3(x — y) and others
vanish. We ignore the rapidly oscillating terms in any calculations. In this sense, Y. and
yr_ are independent of each other at equal time. Although our derivation is not rigorous,
we can check the derived effective theory by the Bethe ansatz solution for the spin-%
case. After checking the results, we can calcnlate various guantities in our effective theory.
Furthermore, we may apply our consideration to the higher spin case. It is not rigorous
but plausible and useful. Note the chiral Z; symmetry ¥, — -y, originates from the
translational symmetry C, — iC,4, in the Heisenberg model. Constraints (2.2) and (2.3)
can be represented in terms of ¥y and ¥. as follows.

d’lui Voni + "#L,; ¥_g = constant (2.9)
YlaiTiVsay + VTP = 0 (2.10)
Y i Vay + ¥ Wiey = 0. (2.11)

Equations (2.9) and (2.10) express the constraint for vector U(1) and SU(2S) currents,
respectively.

Next, we consider the integration of the the By, field in the long-wave approximation.
Ip order to take a paive continuum limit, we parametrize B, as

Bry = Boe®™ ~ Bo(1 + aVyy)

B}, = Boe™" = By(1 + aV}) (2.12)
and define

A=V =Vl Ry =1+ Vi. (213)
Note that in the long-wave approximation A, transforms as

3A; = —die — A1, €] (2.14)

under the infinitesimal gauge transformation 8B,y = [€, Byy]. Integration over Ry, in
equation (2.5) can be naively performed. The resulting Hamiltonian in the long-wave
approximation is

d . d
H= ';&'j_i (Ex"' +A1) Yy — 1,&11 (E +A1) P
+ MWL ¥mag — WL WYL Vs = WL ¥ 2.15)

where A; is a certain dimensioniess constant. We have ignored some imrelevant operators
which do not affect the critical theory. The effective Lagrangian can be written by taking
into account the constraints (2.9)+2.11} as follows.

L= Yy*iDyy — Mgy ¥))? — Aalviy;) (2.16)

where D, = 3, + Au, (0 = 0,1). Ag is an anti-Hermitian matrix field which is a multiphier
field for the constraints (2.9) and (2.10). Constraint (2.11) can be achieved by the last term
in equation (2.16) which is invariant under the chiral Z, transformation 4 — —y... Thus
we can regard the coupling Az to be large enough compared with the cut-off parameter A.
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3. Strong coupling gauge theories in two dimensions

As the first step towards analysing the effective Lagrangian (2.16), we treat the four-fermion
interactions as a perturbation. In this section, we consider the unperturbed Lagrangian

Lo =i¥y*D, . 3.1

Here U(1) and SUQ2S) gauge fields are denoted by A, and B,, respectively. So the
covariant derivative is written as}

D,=8,—-iA,+ B,. (3.2)
fn “ u "

The Dirac field v;(x) has a colour index i = 1, ..., 25 and a spin index « =%, | which is
a flavour in QCD terminoclogy. Here we show that the unperturbed model is exactly solvable
and is equivalent to the level-25 SU(2) WZw model. In the next section, we consider our
model Lagrangian (2.16) as a perturbed model of equation (3.1). The coupling constant in
two-dimensional QCD has the dimension of mass, and a possible gauge theory as a critical
theory only is realized in the weak or strong coupling limit. Qur model can be regarded as a
strong coupling limit in QCD, which is a stable fixed point against the F? term deformation
[8]. This naive dimensional analysis is consistent with Zamoiodchikov’s ¢-theorem, which
claims that a central charge of conformal field theory at an infrared fixed point is less than
that at an ultraviolet fixed point. In the following, we obtain physical operators of the model
(3.1) and their conformal dimensions.

3.1. Free-field representation

First we rewrite the Lagrangian (3.1) in terms of free fields. The Lagrangian (3.1} is
decoupled into the left- and right-moving sectors}:

Lo =yl + AL +iB_yyy + yl(o, + Ay +iBLV_. (3.3)

The classical Lagrangian is invariant under the chiral gauge transformations which
independently transform the left and right sectors.

Ve = ¥h =gty Y = YL = pey
Ay — A; =A_ 43, A A > Al = A_+8. A (3.4)
B, — B, =g:B.2;" + 22087 B_— B. =g B g +210.g{".

However, no regularization can preserve all the local symmetries due to the chiral anomaly,
Here we respect vector local transformations defined by setting Ay = Az. g1 = g2 in the
above chiral transformations (3.4).

The partition function Z of the model (3.1} is

Z=chxpifd2xﬁg (3.5)

Vgaugc

1 The non-Abelian gauge fields By, are expanded as B r® where z7 is an anti-Hermitian matrix in the fundamental
representation of the su(25) algebra satisfying [1¢, 78] = F25¢¢¢, Tre?1? = — 1725,
1 We adopt the following notation: y® =o', y! =ic?, ¢ = (pl, ¢l 0 = 2 81,
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where Ve eliminates redundant integrals originating from gauge symmetry. It is
convenjent to parametrize the gauge fields in the following way

AL =09 B, = -3+38_l
A_=d_p B = —d_hh~'. (3.6)

The change of variables induces a Jacobian in the partition function. We can exponentiate
it by employing the Grassmanaian fields (i.e. Faddeev-Popov ghosts).

DALDA_DB.DB.. = D¢ DpDgDh det 3, det d_ det V., det V.
= D¢ DeDgDhexp (i f d%x i3, 8 + yid_ B —2TehiV,& -2 Tr biV..c)
(3.7

where V¢ = 8, + [By,, ¢]. The measure in the space of SU(2S) group-valued functions is
formally defined by

Dg =[[dex)e™'(x) g€ SUQS). (3.8)

Then we carry out the vector gauge transformation generating the following change
A=A, — 39 B, =h"'B,h+h78,h. (3.9)
After the gauge transformation, g changes to g’ = A~'g. The measure of the partition
function is invariant under the vector gauge transformation in our regularization., The
resulting Lagrangian does not contain ¢ and k, and DgDh completely cancel out with the
gauge volume Viayge.
The next step is to remove A, and By by the chiral rotation
Yo =gl Yyl (3.10)
b=g"'bg i=g"'7% (3.11)

The measures of the Grassmannian fields are not invariant under a chiral rotation.
The response W from the transformation (3.10) is calculated from the foliowing relation.

f DYDY exp [i f a2yt ipmf_} = f Dyl D_exp [i f AR ART IRV iW].
(3.12)
Namely
iW =Indet D;. (3.13)

The Dirac determinant on the right-hand side is calculated in [9]. One finds

W = —2Wwzwlg'] — % f d%x 8,90 ¢ (3.14)
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where Wwzw([g'] is the wzw functional defined by

1 2
Wwzwlg] = —g—ﬂ(fdzx d,gg7 0. g7 + gfdzx ds e“b‘aagg"iabgg”lacgg").
3.15
Similarly we can calculate the response to the change (3.11) regarding V4 as the Dirac
operator to the adjoint representation:
DH'DE = DEDE exp(—i2C, Wiwzwlg')) (3.16)

where f4b¢ féb¢ = C 574, Thus we obtain the free-field realization of the partition function
(3.5} (hereafter we omit primes)

2 = [ DeFields) expliSmas + Spuge + S 3.17)
where

S = [ L0+ B0 )
S
Seauge = ~5 f d%x 8, 08_¢ — (2 + 2C,)Wyzwlg]

Sghoss = — f Px (71048 + yid_p — 2Tebia, & — 2Tebid_c). (3.18)

Although the kinetic terms of the bosonic fields in the gauge sector have a minus sign, the
physical space is positive definite [10]: the bosonic fields in the gauge sector cannot appear
in the physical space by themselves.

The central charge of the model (3.1) comes from three sectors appearing in the action
(3.18). The matter sector consists of 45 Dirac fermions, so that the central charge of this
SECtOT Cryater 18

Conarer = 45. (3.19)

The gauge sector has a single boson and a level —(2+2C,) SU(25) wzw field. Therefore
the central charge of this sector is [11]
. 1+ {(—2 = 2C,)dimSU (2} _ 48225+ 1) —-§
Bauge (=2 -2C,)+C, S4+1
The central charge of the ghost sector cgnost can be obtained from the two-point functions
of the energy-momentum tensor (EM tensor) of the ghosts. The result is

(3.20)

Cghoss = —2 — 2C2 = —85%, 3.21)
In this way, one finds that the toial central charge of the model ts
Ciotal = Cratter + Cgauge + Cghost = 3S/(S+1). (3.22)

This is identical to that of the level-25 SU(2) wzw model.

‘We can show that the EM tensor of the action (3.18) is identical to that of the level-28
SU(2) wzw model [12]. The EM tensor of the matter sector is written in a summation of
quadratic forms of a colour current, a flavour current and a U (1) current [13]. However,
the EM tensors of the colour part and of the U/(1) part do not contribute to the physics
because they are, together with the EM tensors of the gauge sector and the ghost sector,
written in BRST exact form. The remaining EM tensor, which is the quadratic form of the
flavour current, is exactly same as that of the level-25 SU(2) WZW model.,

Next we shall clarify the physical operators of the model (3.1) in order to see the
relationship with the WZwW model in detail.
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3.2, Physical observables

We consider the meson-like operator S, z(x) defined as

Sep(x) = U, ()Wip—(x). (3.23)

It is represented by the free field using equations (3.10) and (3.11)

Sep(x) = ¥l ()8 ()PP (x). (3.24)

This belongs to the fundamental representation of the chiral su(2) x su(2) algebra. We can
compute the conformal dimension of S, g(x}, (A1/2, Ay /2), collecting the dimensions of the
free fields in the right-hand side of equation (3.24). The free Dirac field ¥, ({..) has the
conformal dimension (4, 0) ((0, 3)). According to Knizhnik and Zamolodchikov [11], a
level-k SU(N) wzw field hyg has the conformal dimension

G Cz
(k+c.,’ k+Cu) .29

where C; = (N? — 1)/2N. Therefore level-(—2 — 25) SU(25) wzw field g in the right-
hand side of equation (3.24) has the dimension

4871 48 -1
('35(s+ 1)’ " 3S(s + 1)) ' (3.26)

The dimension of e*} is directly calculated from the two-point function

. . 1
(&9 @0y = constant exp [ZE ln(xt — yHx™ — y')]
(3.27)
=constant(xt — yH)1/*S(x= — y)/*,

This indicates ¢'® has the dimension

11
(‘ﬁ' ‘E;E) , (3.28)

Hence, the conformal dimension of Sy is

- 1 452—1 1 3/4
Mp=Ayy=--— Fe e LT e ™ / (3.29)

This result implies that Sy g is identical to the fundamental field of the level-25 SU(2) wzw
field hgp.

In order to check this identification, let us construct a primary field with higher chiral
su(2) spin. Define

Sat sy fyoos, = SYMSay 1+ Sasy ) (3.30)

where Sym(.--) means to symmetrize the indices (o ---09;) and (By---fz;).  So
Say-y; p1-pyy Das the chiral su(2) spin (j, j), where j € Z/2. From equation (3.24),
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we see that the indices (iy,...,05;) and ¢ki,...,kp,) of the product g, - " ik,

are antisymmetrized in Sy .a.,.4..%,. Therefore g, ---g;1, belongs to the 2j-
antisymmetric representation of chiral su(28) algebra and has the conformal dimension

(3.31)

(_ @S+ 1JjS—Jj)/s Q2§+ 1)Jj(S - J')/S)
2428 ’ 2428 '

The dimension of Su,..qy,,8 g, (Aj, A;), is calculated using the result (3.31) and the
dimensions of (¥.¥_)% and ei2/¥:

2j  EHED @p G+
2 2428 85 25+2°

=A;j = (3.32)
This is precisely equal to the dimension of Sym(#,,g, - - - A8, ). We notice the fact that
the Pauli principle restricts the range of j to 0 € j £ S, which is also an expected result

[11].

Another kind of a gauge-invariant operator is a flavour current

Jx(x) = YL, () (Oas/2DVip(x) (3.33)

where the ¢ are Pauli matrices. They satisfy the level-25 Kac-Moody algebra. The whole
physical space of the model is spanned by acting Fourier modes of J,.(x) to some states
generated by a product of the operator Sy g. Therefore we can conclude that the physical
Hilbert space is equivalent to the Hilbert space of the level-28 SU(2) wzw model.

4, Perturbation theory in a strong eoupling QED for the S = -;- Heisenberg model

Our goal is to solve the model given by equation (2.16). As explained in the previous
section, this mode] at A; = Az = O is described in the level-2S SU(2) wZw model, and
thus we consider perturbed theories of the wzw model with the couplings A and Az. In
the Lagrangian (2.16), the chiral symmetry is violated apparently by the two independent
coupling constants X; and A;. Since the chiral symmetry is generally believed to protect
massless excitations in field theory, we have to answer why the massless excitations survive
in the Heisenberg model. First, we discuss the § = 1/2 case and check the results by the
finite-size scaling in the Bethe ansatz solution. After that we discuss other spin cases in the
next section.

In the § = 1/2 case, the model (2.16) is a two-flavour strong coupling U/(1) gauge
theory with four-fermion interactions. For the description in terms of the level-1 SU(2)
wzw model, the following expression for the four-fermion interaction is more manifestly
written

- /\‘l(il}aiyswa)z - A-Z(‘ffa\b‘a)z =4+l o+ (o F Ad g
+ 400 = 2Pyl y k. ey Y + HO). @.1)
Note that the first and last terms violate chiral SU/(2) and U(1) symmeiry, respectively. The

last term does not contain any SU(2) degrees of freedom but a &/(1) degree of freedom,
which is killed by the U (1) gauge field. In fact, the last term is a dimension zero operator



4704 C ltoi and H Mukaida

which is just constant and affects nothing in the physics. The second term on the right-
hand side of equation (4.1) vanishes because of the constraints (2.9). We have to take
into account only the first term in the right-hand side of equation (4.1) which has the
conformal dimension (1, 1). The SU(2) excitations are independent of the /(1) degree of
freedom. Thus the system is described in the level-1 SU(2) wzw model with a perturbation
Jy - J. Although this term violates the chiral SU/(2) symmetry, it is marginally irrelevant
for a positive coupling constant A; + Az > 0. Since A2 should be large enough to realize
the constraint in our case, the perturbation J, - J_ muast vanish in the low-energy limit.
This is the reason why the spin-% Heisenberg model has massless excitations despite the
existence of the chiral symmetry violating interactions. This obtained effective theory for
the Heisenberg model is identical to the continuum field theory model derived from the
half-filled Hubbard model by Affieck and Haldane [3].

‘We can check whether this continuum field theory describes the low-energy physics of
the spin—% Heisenberg model by the finite-size scaling of the Bethe ansatz solution. This
work has already been done by Affleck er al [4,5]. The finite-size effect in the energy of the
ground and excited states is calculated in conformal field theoty by a conformal mapping
from a complex plane onto a cylinder with a finite circumference L [14]. The leading term
of the ground-state energy is proportional to L. The L~! correction to the ground-state
energy gives us the central charge of the system. An excitation energy proportional to L~!
gives us the conformal dimension of the comresponding primary field. If we study these
finite-size effects in the solution of a lattice model (for example the Bethe ansatz solution
of the Heisenberg model), we find the corresponding conformal field theory with suitabie
central charge and a whole set of primary fields which describe the critical phenomena in
the model. Generally, if the conformal field theory has marginally irrelevant operators there
are further logarithmic corrections to the finite-size effects on the energy levels of the model
{13]. The ground-state energy has a L='(log L)~? correction and the excited energy has an
L~Y(log L)~! correction which can be calculated within the framework of a perturbation of
the conformal field theory.

The coefficients of these corrections are determined by the three-point functions of
the operators. If there are logarithmic corrections to the lattice model, the low-energy
phenomena of the system can be described in the deformed conformal field theory with
certain marginally irrelevant perturbations.

In the spin-,}2 Heisenberg model, we can compare the results of the Bethe ansatz solution
to the level-1 SU(2) wzw model with the J + J_ perturbation. The result is good as we
will show below.

The single-loop calculation in the WZw model shows that the sign of the bare coupling
constant determines whether the J, - J_ perturbation is marginally relevant or irrelevant. In
our case |A} < Az, J - J- Is marginally irrelevant, and thus we can calculate the finite-size
effects in the perturbation theory. The finite-size correction of the ground-state energy Eo
to the bulk part ¢pL is

ki3 do
Ey—gl=—-— ) 4.2
2 (c * o L)S) @2
The energy gap of the first excited states are given by
72 d,
— Ep = — 4.
E-Ey =2 (.xt e ) 43)

2 d.
E~Eo= (xs + _) (44)
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where E, and E; are the energy of triplet and singlet excitations, respectively. We can
calculate ¢, xi, x;, dp, di, and d; both in the wZW model and the Bethe ansatz solution as
follows.

€ X X do & ds
waw I
Bethe ansatz 1 3 § 03433 -1 3 (4.5)

The results of the Bethe ansatz solution were obtained by Woynarovich and Eckle [16].
They agree with each other except for 3. This reason for the disagreement in dy has not
yet been understood.

On the basis of the finite-size scaling analysis of the Bethe ansatz solution, we conclude
that low-energy phenomena in the spin~% Heisenberg model can be described in the level-1
SU(2) wzw model with the marginally irrelevant perturbation J, « J_. Various quantities
can be calculated within this framework from now.

5. A relevant perturbation in the WZw mode! for the S > % Heisenberg model

Inthe § > 1/2 case, we have to reconsider the four-fermion mteracuon within the framework
of the level-28 SU(2) wzZw model. The meson-like operator wm +Wgi— can be identified with
the SU(2) valued field fieg(xT, x7) in the wZw model, which has conformal dimensions

3 3
(ss+s’ss+s)‘ .1

The four-fermion interaction (11)? is a relevant operator (Tr#)? which has conformal
dimensions

1 1
(m~ m) (52)

in the wzw model. The essential difference between the § > 1/2 case and the § = 1/2
case is the existence of the relevant operator with chiral Z; symmetry ¥, — —try (or
hog — —hqp in terms of the Wzw model). There is no chiral Z; symmetric relevant operator
in the unitary representation of the SU(2}; wzw model for the § = 1/2 case. There are
primaries with conformal dimensions (7 {(j + I)/25 + 2, j(j +1)/25+2),0 < j £ §in
the level-25 SU(2) wzw model. Since the primary with a half-odd-integer j has no chiral
Z, symmetry, the only marginal perturbation J. - J_ is possible in the § = 1/2 case.

In the S > 1/2 case, the most relevant perturbation (Tr#)? should be added to the
Lagrangian of the Wzw model in order to achieve the constraint Y. Yo~ = 0. Conformal
field theory with the relevant perturbation must be deformed to another fixed point or a
massive theory, The SU(2) wzw model with the constraint Trk = © is classified in two
universality classes of half-odd-integer 5 and integer 5. This can be explained as follows.
At large §, we can treat the WZW model semiclassically. The SU(2) group valued field fqp
in the wzw model can be parametrized by the two complex variables z;, zo with a constraint
1z112 4 1z2f* = 1 as follows

B (2 ":2) (5.3)
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If we require the constraint Tr# = Q, the real part of z; vanishes and the field % is in a two-
dimensional sphere with a radius 1. This implies that the target space of the WZw nonlingar
sigma model with the constraint Tr # = O becomes a two-dimensional sphere which is the
same as the target space of the O(3) symmetric nonlinear sigma model. In a practical
calculation, it was confirmed that the kinetic term and the WZ term of the constrained wzw
model are identical to the kinetic term and 8 term at @ = 257 of the O(3) nonlinear sigma
model, respectively. We obtained this model for the Heisenberg model in a different way.
The & term discriminates between the models half-odd-integers and integers. Since the O(3)
nonlinear sigma model is asymptotically free and the coupling constant is proportional to
$~=2 in our situation, the renormalization-group flow with increasing length is running toward
smaller § within one universality class. This is consistent with Zamolodchikov's ¢c-theorem
in the deformation of the level-2S SU(2) wzw model. The c-function takes the value
63/(25 + 2) at a fixed point which is described by the level-2S SU(2) Wzw model. The
renormalization fiow is running toward a model with a smaller value of c-function within
one universality class. In the half-odd integer spin universality class, only the § = 1/2
model has a stable fixed point which is described in the SU(2); WZw model, Other fixed
points in the half-odd-integer spin case are unstable against a (Tr 4)? perturbation and might
be deformed into the SU(2); wzw model. Thus, the low-energy phenomena of the half-
odd-integer spin Heisenberg model can be described by the SU(2); wZw model with the
marginally irrelevant perturbation Jy - J-. In the integer spin universality class, there is no
stable fixed point. Thus the field theory becomes massive. Our consideration is plausible
despite the semiclassical view point of the universality classification. The Bethe ansatz
and the Affieck~Kennedy—Ieib-Tasaki (AKLT) solutions [2] agree with the continuum field
theory at § = 1/2 and § = 1 where the quantum effects are very strong.

6. Summary

We have derived 2D continuum gauge theories as effective theories of the 1D quantum
Heisenberg antiferromagnets with arbitrary spin 5. In order to represent the spin matrix in
terms of fermion operators, local constraints are necessary as in continunm field theories.
The SU(2S) x U(1) current constraints can be realized in terms of strong coupling gauge
theories and other constraints can be achieved by adding a certain perturbation term.
SU(28) x U(l) degrees of freedom are confined by the gauge field and it was shown
that unperturbed gauge theory is equivalent to the level-28 SU(2) wzw model.

We show that the low-energy phenomena in the spin-—% Heisenberg model can be
described in the level-1 SU(2) wZw model with a marginally irrelevant perturbation
J. + J- which violates the chiral SI/(2) symmetry. Since this perturbation vanishes at
the critical point, the massless excitations can survive despite the violation of the chiral
SU(2) symmetry. Several quantities of this continuum field theory were checked by the
Bethe ansatz solution in the finite-size scaling method. The results are good.

We can apply our derivation of an effective Lagrangian to some extended
antiferromagnetic chain models with higher spin [6,7]. They are solved uvsing the Bethe
ansatz and it is believed that these soivable models have gapless excitations. This has been
confirmed in several practical models using analytic and numerical methods [4, 17]. Here,
we consider the § = 1 case in terms of continuum field theory. The model described by
the following bilinear—biquadratic Hamiltonian

H =) "15:+ 5, - B(S: - 5,)%) (6.1)

(.3
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is solvable at 8 = 1 and —1 using the Bethe ansatz {6,7]. At # = —1, the model possesses
an SU(3) symmetry and a gapless excitation. To see this, we introduce three fermion
operators Cyy [13]. The spins can be written;

§% = ClazL?sCpe (6.2)

where the L9 are the § =1 generators. The states for the spin system satisfy the local
constraint at each lattice site as in the § = 1/2 case.

ClaxCax|phiys) = 2|phys). (6:3)
The relations
LPupL% e = 8y 8ue — Suydpe (LOLP)ag(LPLP)ye = Supdye + By b (6.4)
enable us to rewrite the hamiltonian (6.1) in terms of the fermion operators.

H =3 [~ClyCoyClpyCpx — (B + 1)C0xCpr Clay Cpy 1. (6.5)
{27}

At § = —1, the hamiltonian has a global SU(3) symmetry in addition to the local /(1)
gauge invariance. The low-energy phenormena in this system can be described in a strong
coupling U(1) gauge theory with SI/(3) flavour as in the case of the § = 1/2 Heisenberg
model, In mean-field theory, the fermion momentum becomes 7 /(3a), which is determined
by the constraint (6.3) on the number of fermions at each lattice site. The low-energy
phenomena are dominated only by those fermion operators ¥, and ¥_ near the Fermi
surface:

Cax = +/a(Was (X)ETH 1y (x)e7EP), (6.6)
The effective Lagrangian of the I/(1) gauge theory with ST/ (3) flavour becomes
£ = i, y* Dy ¥y + (marginal operators). 6.7)

This effective theory is equivalent to the level-1 SU{3) wZzw model with a certain marginal
perturbation. Although this model has one relevant operator ¥, with gauge invariance,
the chiral Z; symmetry forbids it to appear in the Lagrangian (6.7) and protects the
gapless excitation as in the S = 1/2 Heisenberg model. The translational symmetry of
one lattice bond in the original lattice model (6.1) is represented as a chiral Z; symmetry
V. — @Ay, . — y_ in the effective gauge theory. This chiral Z; symmetry forbids
the relevant operator ¥V, and then the gapless excitation can survive at § = —1. On
the other hand, around 8 = —1 there is no symmetry to forbid the relevant operator, and
therefore there is no reason for the model to have gapless excitations.

At the other solvable point 8 = 1, the existence of a gapless excitation has been verified
[4,7,17]). The finite-size scaling analysis tells us that the low-energy phenomena can be
described in terms of the level-2 wZw model [4, 17]. In our gauge theory description, this
model corresponds to an SU(2) x ST/(2) Dirac fermion coupled to an SU(2) x U (1) gauge
field. Since this theory has a relevant operator (¥y)? with conformal dimensions (%, %)
which satisfies required certain symmetries, it is easily understood that a theory around
B =1 has no gapless excitation.
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In other spin cases of the Heisenberg model, the system can be described by the level-2S
SU(2) wzw model with a certain relevant perturbation, which must deform the conformal
field theory to the other fixed point or massive theory. From the semiclassical view point
in the level-28 SU(2) wzw model with the constraint Tr/i = 0, we see that the system
becomes an @ (3} non-lincar sigma model with the & term at € = 275, The @ term tells us
that there are two universality classes for the half-odd-integer spin and integer spin systems.
The half-odd-integer spin systems can be described in the level-1 SU(2) WZw model with
the marginal irrelevant perturbation J.. - J_ near the critical point. The integer spin systems
become massive.

This is the whoie story for understanding the ‘Haldane conjecture’ in terms of the
strong-coupling gauge theory. It remaings to study the occurrence of the two universality
classes using suitable fermion terminology instead of bosonization.
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